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FINAL REPORT

This is the final report on Contract AFOSR-83-0258, entitled LASER

DAMAGE THRESHOLDS IN PLASTICS." The original termination date of July 1, 1984

was extended to December 31, 1984.

The objectives of the work were to: determine damage thresholds for

plastics at 694 na; and continue the optimization of the use of hole gratings

for producing multiple damage spots for a study of small-scale damage.

ACCOMPLISHKENTS

Damage Thresholds

The original intent was to determine laser damage thresholds on plastics

produced in a clean environment at the Seiler Laboratory, U.S. Air Force

Academy, at the ruby wavelength (694 nm) as a supplement to studies at the

Seiler Laboratory at 1060 nm. No results were obtained since no plastics of

sufficiently high quality to warrent testing were produced during the duration

of the contract.

Methods for Determination of Waist Size

The original work on the use of hole gratings for laser damage testing

which was published in Applied Optics 22, 3388 (1983) indicated that while

trial and error methods of determining optimum focusing conditions were available,

a systematic method would be useful for the prediction of the position and size

of the best focus for pulsed systems. This prediction is dependent upon a

knowledge of the characteristics of the laser system including the size and

position of its waist. A method for determining these quantities was proposed

and tested using both a cw laser for exploratory investigation, and a pulsed

ruby system as an example. The proposed method involves the measurement of

of beam size at two different distances from the back focal point of a lens.



These can be measured si*ltaneously for a single pulse using a beam splitter.

The results indicated that the waist size could be determined with an error

of about 5% and that its position could be determined within 10% of the Rayleigh

length of the laser's output beam. These data would then allow a prediction of

the position and size of the best focus for damage threshold measurements.

Hole Gratings

The use of hole gratings for producing multiple spots useful in damagae

testing was discussed in the publication noted above. This work was extended to

a general treatment of Fraunhofer diffraction of Gaussian beams.

The result of this study was the prediction and experimental verification

of interference details in the region between the intense multiple spots which

permits an alternative method for the location of the waist of a laser system.

The extension of this work to the case of Fresnel diffraction was also suggested

and is currently under investigation.

The work noted above was published in Applied Optics 24, 1350 (1985), a

reprint of which is attached.

PERSONNEL

The Principal Investigator was T. A. Wiggins, Professor of Physics. He

was assisted by John Pardo, a graduate student in Physics. He now is at

Eastman Kodak, Rochester, NY. His Master's paper entitled "A New Technique

for the Characterization of a Spherical Gaussian Laser Beam" was a part of the

publication noted above. His degree was awarded in December 1984. Also contri-

buting to the work was R. M. Herman, Professor of Physics. DTIC TI

SAva:l" '- CdlJDI:



Reprinted from Applied Optics, Vol. 24, page 1346, May 1, 1985
Copyright 0 1985 by the Optical Society of America and reprinted by permission of the copyright owner.

Diffraction and focusing of Gaussian beams

R. M. Herman, John Pardo, and T. A. Wiggins

Methods for the measurement of the waist size and position for Gaussian beams are summarized. An alter-
native method is given which would apply to pulsed systems. The general theory of diffraction of Gaussian
beams is developed which provides a new method for the location of the beam waist. These methods which
use hole gratings are employed to demonstrate their feasibility using a small cw source.

I. Introduction used, especially for spot-size effect investigations. Also,
The propagation and focusing of Gaussian beams was in a study of volume damage, it may not be feasible to

first discussed by Fox and Li' who showed that only two make a direct measurement.
parameters are required to predict the beam charac- A particularly useful formulation has been given by
teristics at any distance from its source. This work has Self.6 In addition to statements concerning the size of
been summarized and discussed by Kogelnik and Li2  a propagating beam and the radius of curvature of the
and by Siegman. 3 More recently, work by Li and Wolf,4  wave front, he has presented equations for the position
Carter,5 Self,6 Luxon et al.,7 and Anderson8 has ex- and size of the waist formed by a lens and for the new
tended the theory and discussed the structure of a fo- Rayleigh length. The equation for the position is
cused beam. analogous to the thin lens equation used for classical

The parameters usually chosen are those of the size optics and is shown to reduce to this for ZR = 0.
of waist wo, the smallest radius of the beam for which It is the purpose of this writing to summarize methods
the intensity is 1/e2 of the on-axis value, and the posi- which have been reported for the measurement of the
tion of the waist. Alternatively, the Rayleigh length ZR beam parameters, to present a modification of Selfs
can be used where zR = irw41A. This length corre- equations, and to describe a new interferometric method
sponds to a distance of propagation to a point where the for the determination of the position of the beam waist
1/e2 radius of the beam is /2times that at the waist, or from measurements made at the focal point of a lens.
the on-axis intensity is one-half of that at the waist. This is based on a general theory of diffraction of
The Rayleigh length can thus be considered to be the Gaussian beams which is presented here. Some ex-
half-intensity width of the Lorentzian on-axis intensity perimental results for a He-Ne laser are included.
distribution along the beam.6

For applications such as coupling of Gaussian beams II Modification of Self's Equations
into spherical interferometers and optical waveguides, The equation given by Self6 for the position s' of the
or for predicting the position and size of the image waist image waist formed by a lens of focal length f when an
formed by a lens, these parameters must be known or object waist of size w0 is placed a distance s from the lens
measured. In laser damage studies it is especially im- is
portant to know these quantities to determine thresh- (a/f) - 1
olds. Although it is desirable to make a direct mea- (s'lf) - 1 = 1)2 + (Z/f)2
surement of the beam size at the damage site, knowledge The size of the image waist w is calculated from w =
of these quantities will assist in the selection of the focal mwo using the magnification which Self gives as m =length and the distance from the laser to the lens to be 1/[(s/f - 1)2 + (z/f) 211/2, the Rayleigh length of the

output beam being z - m 2zR. It is noted that by re-
versing the direction of the beam, the position and size

When this work was done all authors were with Pennsylvania State of the input waist can be computed from the output
University, Physics Department, University Park, Pennsylvania waist size and position using zR = ww'/X.
16802; J. Pardo is now with Eastman Kodak Company, Rochester, The presence of the quantities (s/f - 1) and (s'/f -
New York 14660. 1) suggests that the equations can be reformulated in

Received 24 December 14. a form analogous to the Newtonian form of the lens
0003-6M36/86/091346-09!02.00/0. equation for classical optics. Using the symbols x and
C 1966 Optical Society of America. x' to denote the distances of the object and the image
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from their respective focal points, it can be shown that f2 + - D 2

xx' -,and the lateral magnification is m = x/ =fi x' VIwoD
fi W . The longitudinal magnification is then M2. Y = D
In an analogous manner, defining y s -oandmy' = One of the two values predicted by this equation has to

fSelfs equations take the form be eliminated. If one cannot be rejected on the basis
y, = y2 and m = - = ___ . of its reasonableness, an additional measurement would

y 2+Z1 V be required for some other position. Minimum sensi-
Since the waist positions here are measured from the tivity conditions obtain for the obvious case of D = 0
front and back focal points whose positions can be and for yD = f 2.Although the latter value for D requires
precisely located by autocollimation, no determination a knowledge of y, some estimate of y will assist in
of the position of the nodal planes of the lens is required avoiding this position.
as would be the case using the quantities s and s'. The position of the waist formed by a lens can be
Clearly these equations reduce to the Newtonian determined by observing the size and speed of the
equations for ZR = 0. One difference should be noted. speckle pattern produced when the beam is scattered
While the new Rayleigh length zR = m 2ZR = ZR y'/y, from a moving surface.10 This is very precise but is
the longitudinal magnification is given by dy'/dy = restricted to very small waists and gives no quantitative
M2(z - y2)/ (z2 + y2 ). These equations give the same measurement of the waist size. Both position and size
results as those of Self but have been found useful for can be measured by a scanning technique using a pin-
their simplicity in calculations and measurement. hole,' wire or slit,12 or by various schemes involving a

It is important to recognize that the maximum in- knife-edge. Kocher 13 used a chopper wheel and dual
tensity in a focused beam does not necessarily occur at photocell to locate a beam waist and measurement ab-
the focal point of a lens. As noted by Self6 and Carter,5  errations. Mauck 14 discusses knife-edging of beams.
the maximum intensity can occur inside or outside the Suzaki and Tachibana' 5 and Arnaud et al.16 use
focal point, being at the focus only for the case of s = f knife-edge chopper techniques for both waist size and
or y = 0, for which condition the magnification is position measurements. Cohen et al.17 use a Ronchi
f/ZR. ruling as a multiple knife-edge ',r measurement of the

position and size of very small waists. The position of
Ill. Determinatlon of Waist Size and Positlon a waist can also be found by finding the position where

damage occurs for minimum power or energy. This isThe traditional method for determining the waist size most useful for small waists 7 used in machining and

wo of the beam from a laser system has been from a t aplios.
measurement of beam divergence. If the 1/e 2 radius trimming applications.
measr e o beam divanbem easurge . If thla e lrdi usane zThese techniques are most useful for cw or high rep-
of a beam w can be measured at a large distance z from etition-rate pulsed systems. For single pulses, Winer' s
the source, Wo ff Az/irw, where A is the wavelength, used a multiple-lens camera with different neutral
The limitations to this method are that z is measured d filte lens tomr a set esfr

from the waist whose position may not be known and density flters on each lens to produce a set of images for
measurement. This method depends on being able to

that an estimate of W or ZR must be at hand before the make a photographic negative for densitometry.
measurement since large implies that measurements s Wiggins et al.19 suggested that a hole grating yields themade in the far field, that is, several times ZR. A less multiple images required to produce a negative for
direct method but with fewer limitations is the mea- mlil mgsrqie opoueangtv o

- densitometry. Alternatively, a multiple element pho-
surement of the beam size wf at the focus of a lens or toelectric detector system using storage can be used.
mirror. Here wo = fX/wwf, a result independent of the
position of the input waist. Falk9 has shown that, using
a birefringent crystal, the interference pattern in an IV. Gemal T for Diffraction In Gausian Optics
unfocused beam gives a measure of w0 , independent of To use interference methods to locate waist positions
its position. and sizes, one must develop a general theory for the

Except for the measurement of wo using the beam size diffraction of monochromatic single (simplest)
at the focus of a lens or the method of Falk, measure- transverse mode Gaussian light beams. In this devel-
ments of the waist size and its position are interrelated. opment, we shall identify and describe, for the first time,
Both can be determined by finding the minimum beam a phenomenon which we call interorder interference.
size and its position. This can be a time-consuming We shall present a complete theory for not only
procedure, especially with a pulsed system. Alterna- Fraunhofer but also all types of Fresnel diffraction,
tively, both can be determined from two measurements under the assumptions of optical elements which are
made (preferably) simultaneously. The quantities infinite in lateral extent and thin, and propagation an-
measured are the beam sizes at two different known gles which are small relative to the optical axis. As a
positions with respect to the back focal point of a lens, practical matter, we treat the case of transmission dif-
one of which can be zero, the other some convenient fraction through a series of round holes in an otherwise
distance D. If one of the distances is zero, wo and ZR opaque mask. Accordingly, the entire diffraction am-
can be calculated from the measured beam size. Then plitude is modulated by the traditional broad, circularly
the position of the input waist can be calculated from symmetric single-hole diffraction pattern whose width
the equation varies inversely with hole radius. Because the grating

1 May 1985 / Vol. 24, No. 9 I APPLIED OPTICS 1347



size is infinite compared to beam radii, all diffraction In the present treatment method 1 is described in
maxima are automatically apodized, the diffraction detail while method 3 is called on for conceptual in-
patterns in and of themselves showing no secondary sights. Although method 4 ultimately is exact and
peaks. At the same time these patterns may indeed convenient for numerical evaluation, method 1 has the
overlap, at least in their wings, giving rise to unusual advantage of yielding an infinite series of terms for the
interference phenomena often characterized by the (exact) expression for intensity, with the terms in the
presence of closely spaced interference fringes which are series being expressed analytically, often showing rapid
most prominent in the regions between the ordinary convergence. In cases involving slower convergence,
diffraction pattern maxima. it may be more convenient to use method 4 at the outset.

Interorder interference can be thought of as arising In the present work, both methods were carried out for
in different ways illustrated simply for the case of a a case of somewhat slow convergence, namely, one in
grating comprised of a linear array of holes, having which five grating holes are strongly illuminated. In
spacing d, with one hole centered on the beam axis. the range of angles spanned by the zeroth and first
While the transverse diffraction pattern is solely de- diffraction peaks, including interference effects of the
termined by the slowly varying single-hole diffraction (-1,0,1,2) diffractional orders, the agreement between
amplitude referred to above, that parallel to the hole the results of methods 1 and 4 (the latter of which was
array, although modulated by this function, shows more considered exact) lay within 3% at all points. The errors
closely spaced peaks arising from the grating. For which were most severe occurred at the end points of
simplicity, let us now consider the intensity pattern in this interval where, respectively, interference with the
the region between the zeroth- and first-order diffrac- -2 and +3 orders are expected to contribute more
tion peaks. strongly. For the case in which ten holes are strongly

(1) Let us envision the different diffractional orders illuminated, the relative errors in the 0-1 interval, using
as being comprised of individual beams nominally interference terms corresponding to (0,1), (-1,0), and
propagating away from the grating at angles given by (1,2), the relative errors are reduced at all points to
mX/d for the mth order, X being the optical wavelength, within 0.3%.
Because the centers of curvature of the individual
beams lie on lines connecting each diffractional beam V. Fraunhofer Diffraction of Gaussian Beams
with the grating but do not coincide with the grating, the Consider a Gaussian beam traveling in the + direc-
centers of curvature for the outgoing mth order beams tion with its waist at r = 0, having an intensity pro-
are distinct. Consequently, there will be successive file
regions of constructive and destructive interference
between neighboring diffracted beams which are iden-- _____

tifiable as interorder interference fringes. M1 = exp - 2e 1

(2) One may envision the zeroth to first interorder I ( 1/21 ++ 2

interference as arising from the following types of am- I tru4I
plitude: that comprised of Huygens wavelets emitted for lateral displacement in the direction of the linear
simultaneously at t = to from all holes; and that com- array of diffracting holes, where we have suppressed the
prised of Huygens wavelets emitted at t = to from the dependence in the direction mutually orthogonal to the
central hole and at times t,, = to - nX/c from the other t and " axes for purposes of simplicity. The beam waist
holes, nX being the retardation path length for any given is designated by w0 (>>,\ for small angle approxima-
hole, /c being the optical period. Thus, interorder tions) while the beam radius at any distance is
interference can be thought of as a collection of Huygens I 11/2

wavelet interferences for each hole, of waves emitted at w() f w0  + I- I • (2)
different times. 11 wi

(3) Each of the above pictures appears at first sight For any , the wave front radius of curvature is
to violate one's physical intuition until it is recognized (21W
that, indeed, one may envision the incident Gaussian I
beam as a Fourier superposition of plane waves having which is consistent with the optical electric field
a spread in propagation vector components in the di- strength
rection of the linear array of grating holes. The Fourier 2 ikt 2

components which diffract into the interorder region E(E, = exp - + i(k ) + -1 4)
may indeed do so in different diffractional orders si- + W

( !w02 2 ( 4

multaneously, thus at once justifying both of the above I TW2-ww1/

descriptions. Let the linear array of holes be inserted into the beam
(4) Ultimately the method which is most theoreti- at distance " = z, with z being positive for the grating

cally sound for treating the problem is the explicit lying on the far size of the beam waist from the light
summation of the Huygens amplitudes from each hole source. One of the holes is centered on the beam axis.
at any point in the field space, keeping careful account To obtain Fraunhofer diffraction, one inserts a positive
of retardation phases associated with each path, then lens into the beam on the image side of the transmission
squaring to obtain the relative intensities, grating, at any distance whatever from the grating, and

1348 APPLED OPTICS / Vol. 24. No. 9 / 1 May 1985



the desired diffraction pattern will then appear on a S F
screen placed at the focal plane of the lens as a function ..
of 4 = f0, f being the focal length of the lens, while 0 is of-- - - -
the diffraction angle. w Z H L P

There are several simple concepts which allow one t Fig. 1. Schematic of an experimental arrangement. The object waist
determine the form of the diffraction pattern at the W is a distance S from a lens L of focal length F and a distance Z from
Fraunhofer plane. The simplest is to note that the a hole grating H. The Fraunhofer plane P is one focal length from
grating, when placed in the beam as shown in Fig. 1, the lens.
does not change the nature of the transmitted beam (i.e.,
diffracted in zeroth order) aside from lowering its overall 1. Moreover, in Gaussian optics the unique situation
intensity. This is clear when it is realized that the in- exists that the placement of an object waist a distance
coming beam is simply a Fourier superposition, and s tha te p ce an obae waist atisteachampltud is ransittd inits wn irecion = fif from a lens produces an image waist located at
each amplitude is transmitted in its own direction, distance f in the image space, that is, in the Fraunhofer
thereby being superposed without change following plane. Accordingly this situation becomes quite easy
passage through the grating. The intensity pattern at to deal with since in all orders the wave fronts, although
the Fraunhofer screen, due to the zeroth order by itself traveling in different directions, are all planar. The
is, then, the same as the angular intensity pattern that angle at which the mth beam physically propagates
the original beam would have very far away from its between the lens and the Fraunhofer plane is now
waist,22 clearly 0m If - (f - z)]/f or mXz/fd. Accordingly, in the

10(0) = const X exp -\2 J. (5) region between the zeroth and first peaks, say,

Similarly, each mth order diffraction pattern, by itself, E(O) = Eo(8) exp(ik ) + E1 (0)
can be seen to be a replica of the zeroth diffracted beam 1/W
centered on its own central diffraction angle 0..(= exp t1(f)2+lfdl (
m A/d), thus with R1(0) similarly given by E0 (0 - 01), so that the in-

Ia(0) = I(9 - 0.), (6) tensity is proportional to
with I0 given above. It is, in fact, the possible overlap IE(0)12 = EJ(0) + EJ(0 - 01) + 2E0(e)E0( - 01)
of various order intensities in the Fraunhofer plane f A I l
which gives rise to the interference. For example, if the × cok 1  - d q• (8)
grating consists of holes lying much closer together than
wo, distinctly separated orders are formed with no ap- In the latter expression, " represents the optical path
preciable interference. This, in effect, corresponds to difference in the zeroth and first beams as they reach
the traditional use for which diffraction gratings have the Fraunhofer plane, which is the same as if both
been employed. [Of course, at distances smaller than originated at some point on the optical axis formed by
the Fraunhofer distances, the orders might not be well the intesection of the first diffraction beam in the space
separated, with a resulting complexity in the diffraction between the lens and the Fraunhofer plane. Thus, is
pattern. If the lens and screen are placed just behind such that f (Xz/fd) while, of course, 0 f s/f.
the grating, the interferences are just such as to form a Hence
shadow of the grating-just the starting point for in- JE(6)12 EJ(0) + EJ(0 - 01) + 2E0(O)Eo(O - 01)
ferring far-field diffraction patterns. On the other
hand, if the grating spacing is comparable to the x cos 2w .d  - 2 1 (9)
beamwidth, we might expect to find single-hole dif- I d 21
fraction, leading to an intensity distribution 57(0) in the results showing an interorder interference signal having
Fraunhofer plane, or perhaps a two-hole interference angular period d/z.
pattern. These can each be interpreted as the result of Now the Fraunhofer diffraction pattern must by
a great many overlapping orders all interfering with one definition be independent of the imaging lens separa-
another in each direction 0 to produce the relatively tion from the grating, inasmuch as it captures parallel
simple patterns.] rays for each angle and brings them to the same focal

In a more interesting case, the present context, we point in the Fraunhofer plane. Let the lens in Fig. I be
consider the neighboring orders to be reasonably dis- placed at some distance other than the focal distance
tinct but not entirely separated, with several grating from the object waist to see in what way one can predict
holes illuminated so that the individual orders by the same diffraction pattern as that given above. The
themselves resemble the intensity distribution of the intensity for each mth order by itself will be unchanged,
undiffracted beam on a Fraunhofer plane. Hence w0  since this is simply related to the distribution of Fourier

d << w(z) which means that one must place the grat- components leaving the grating independent of the
ing several Rayleigh lengths away from the waist posi- position of the lens and Fraunhofer planes (which al-
tion. ways maintain a separation equal to the lens focal length

Relative to the central angle in each order at distance f). The interorder interference structure could differ
r from the central hole in the grating, the wave fronts only if the phase differences at the Fraunhofer plane for
have identical form prior to intersecting the lens in Fig. the zeroth and first diffraction peaks are changed. Now

1 May 1985 / Vol. 24, No. 9 I APPLIED OPTICS 1349



the angle at which the mth diffraction beam approaches superposed to give the complete interorder interference
the Fraunhofer plane will be given by 0mit - (s - z)]/f pattern. Each set of interorder diffraction lines is, of
or (mX/df)(f + z - s). At the same time, the wave course, perpendicular to the vector connecting the dif-
fronts are now curved, because the image waist position fractional orders giving rise to them. Often such su-
is located at a position different from that of the perpositions give rise to an appearance of star-shaped
Fraunhofer plane. The curvature of the wave fronts at maxima as opposed to more circular ones which might
the focal plane of the lens is known to have the simple arise from products of cosine terms which appear in the
form R'(f') = -f 2/(s - f). Hence, the phases of the above expression. The overall interorder inteference
zeroth- and first-order waves which are interfering are pattern appears as a type of moirb pattern.
lk - 1/2kt 2(s - f)/f2] and

Ii Yfs+Z)' VI. Further Considerations
2 fdIf-s +z) - S +Z)2 (S1f) A. Displaced Gratings

+ dl - L I If the I-D hole grating is displaced along the direction
of the array of holes so that no hole coincides with the

to consistent approximations. Examination of the optical axis, the diffraction pattern suffers some
phase difference, again noting that for the given ge- changes. We anticipate these to be periodic, in that if
ometry the effective " value is such that (X/df)(f - s + the displacement d equals an integral number of d, the
z)p = Xf/d, reveals an absence of quadratic terms in t pattern must return to its original form. For d less
and linear and constant terms equal to those obtained than d, superposition of Fourier amplitudes again leads
above for the simpler case s = f. Hence, the Fraunhofer us to recognize the zeroth order as remaining un-
pattern is given independent of s, as expected. changed, while the mth order would be diffracted un-

In the next stage of refinement, it is seen that in disturbed except for a phase advance equal to 2 7rtdOn/
principle all orders interfere with one another as indi- or 21rn (d/d). Accordingly, the intensity for a 1-D array
cated for the zeroth and first orders in Eq. (9), although of holes is modified to the form
for orders separated by two, the spatial interference
signal has twice the spatial frequency and so forth. A 1(0) = .(0) E V7oJ0w - i)Jo(G - 0,)
complete way in which to represent the diffracted in- U

tensity in the t direction for an infinite linear array of X cos 121 i(0j - O) _ -- -LJ (12)

holes (with one hole centered on the optical axis) is, (0- 2z ]]

therefore, In two dimensions, the grating could be shifted by a
vector displacement J, leading to an expression

1,0 ) = 7 ( ) j E .%/o(0 - O0)( - 5 1 ) - 5 ) E v '/ oT(U - T e )I o(l7 - T e )

Xcosj2. (oj -Oi)0O- lh(Oj+0)] (10) ( Ed

i and j being diffractional order indices, where we have Accordingly, as one physically displaces the grating, the
included the slowly varying single-hole diffraction interorder interference fringes in the Fraunhofer plane
function . (O). This expression is exact as long as the correspondingly are displaced (by one spatial period
small angle approximation holds. each time id components change by one grating spac-

In two dimensions, one can again label all diffrac- ing) against a background of fixed diffractional or-
tional orders by a single running index j and assign a set ders.
of central angles Oj and intensities to each order deter-
mined in accordance with standard diffraction theory B. Negative z
through the use of reciprocal lattice vectors for periodic If the grating is placed before the object waist and the
arrays. The general Fraunhofer diffraction intensity lens is again placed at an arbitrary location following the
function in two dimensions as a function of ffi (0 ,0,), grating, with the diffraction image screen again spaced
q being the direction perpendicular to both and , by one focal length from the lens in its image space, the
therefore becomes only mathematical difference in the above formulation

is that now z has become negative. Equations (12) and
1(0) -r(O) j vo(#9-T F )lo(lT- ) (13) then give the same diffraction patterns as before

for td = 0, although if kd is now changed, the interorder
X cos 2 (0 - 9). (9- th(f, + OM , (11) interference fringes move counter to their displacement

Iin the positive and equal magnitude case.
the individual order intensity functions having identical
functional form. (They could in some cases have dif- C. Cases Arising from Various Periodicities of the
ferent intensities for different types of gratings, how- Interorder Interference
ever.) From Eq. (11), one sees that each pair of orders Referring to the simplest case, a single line of dif-
gives rise to sets of interference fringes which appear as fracting holes one of which is centered on the beam axis
collections of lines having commensurate periodicities as described by Eq. (10), it is easily seen that for adja-
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cent order interference the number of maxima per order .
is nominally given by z X/d2. If this number is an even ------

integer, there will be a maximum at each neighboring z
diffraction peak maximum position, which will be w w H" H L p
complemented by the corresponding interorder inter- Fig. 2. Schematic for calculation of Fresnel diffraction patterns.
ference pattern associated with the peak in question and Lens L consists of two parts L' and L'. P is the Fresnel plane for L
the nearest neighbor to the other side; similarly, if z X/d2  and the Fraunhofer plane for L'. Hole grating H is a distance Z from
has odd integral value, there will be a local interorder the object waist W. W" is the image of W formed by lens L", and H"
interference minimum at these positions, which will be is the image of the hole grating H formed by this lens, a distance Z'
similarly complemented. However, in other situations, from W'.
a competition exists (which will be complete whenever
zA/d 2 is half-integral) by the interorder interferences
of the neighboring peaks to either side of each diffrac- corresponds to the situation in which the image grating
tional maxima which tend to suppress the overall in- hole diameter and spacings are also infinite, leading to
terorder interference in the vicinity of these regions. all diffractional orders being superposed, yet still in-
Accordingly, the interorder interference can be var- terfering with one another. This, of course, is recog-
iously quite powerful or relatively suppressed in the nized as the illuminated portion of the grating itself
vicinity of each individual diffractional maximum de- being imaged on the screen. Finally, if there physically
pending on the actual choice of zX/d 2. is no lens L between the grating and the screen, one can

use the above techniques by choosing a position (sepa-
D. Fresnel Diffraction of Gaussian Beams rated by an arbitrary distance from the screen) at which

Consider, as before, a beam having object waist at " we place an imaginary lens combination L',L", with L'

= 0, a 1-D hole grating placed at z, and a lens placed at having a focal distance f' equal to the distance of sepa-
a distances > z. A screen is placed at the far side of the ration with the screen, and L' having focal length f' =

lens at an arbitrary distance from the lens for purposes -f. Undoubtedly, the most convenient choice offis
of displaying the diffraction pattern. A simple tech- the grating-screen separation itself, so that the image
nique which can be used for predicting the Fresnel grating coincides with the physical grating itself.
diffraction at this screen is to imagine the lens to be The above discussion can be summarized through the
made up of two lenses, L' and L", as shown in Fig. 2. mathematical expression for Fresnel diffraction through

The focal length of the actual lens L is denoted by f, that a periodic 2-D array of holes:
of L'and L' as f' and f", with f =f f/(f' -f). 1() ff= I mmI Ir(m") E v/Io(mI#G-Uii)Io(m-gT$ - 9 j)

The focal length f' is chosen to be equal to the dis- Z i

tance between L and the screen. Thus the Fresnel x cos 2r- ( - 0'). 1/2(0; + 01) - (14)
diffraction pattern is simply the Fraunhofer pattern I N Z.]

associated with the object beam and grating as viewed with inW being the standard optical magnification of the
through the lens L". Now it can easily be shown that grating by L", mg is the corresponding Gaussian image
the beam diameter and wave front curvature of the in- waist magnification by L". The diffraction angles 0,
dividual diffractional beams arriving at the screen are are the actual diffraction angles in the problem (i.e., the
those which would have been produced in the absence angles formed by the beam axis and the line joining the
of L " by an image beam having a new value for w0, called lens at the beam axis with the nth diffraction spot),
w0, and a new waist position, to which we shall reference related to the corresponding Fraunhofer angles O, for
a new longitudinal coordinate k", i.e., the image beam f" = - (i.e., no lens L" necessary) through On = On/m".
waist is located at " = 0. Meanwhile, all diffractional The distance z" is the displacement (toward the image
geometric aspects take place as if L" were removed and direction) of the standard geometrical grating image
the grating were replaced with its standard geometrical from the Gaussian beam waist image position for lens
image, located at "' = z" (z" being the separation, L". Finally, ;d is the transverse displacement of the
therefore, between the standard geometrical image standard optical grating image relative to centering on
position of the grating and the Gaussian optical position the beam axis, given by t = ff m d. One should be
of the image waist), having apparent hole spacing d" aware of the possibility throughout, that mn", rn" , and
and hole radius related to the actual values through the z" or any combination of the three can be variously
standard expression for lateral magnification by the positive or negative depending on geometry. Finally,
simple lens L". In case L" forms a real image of the while the normalization factor I nm" I gives a good
grating, these distances become negative. This has no indication of the intensity behavior due to the magni-
effect on the diffraction pattern formed per se; however, fications, it may not be entirely accurate, and, if nec-
if the grating is displaced through distance td, the image essary, care should always be taken to assure that the
grating would then be negatively displaced, t < 0, total intensity in the Fresnel pattern matches the energy
leading to negative angle displacement of fringes, all flux transmitted by the grating.
things equal. The fact that the image grating may lie
to the image side of the lens L, or perhaps even beyond Vii. Waist Size and Position Measurements
the screen itself, is interesting but is of no particular Two types of experiments were performed using hole
physical consequence. An image grating of L" at 4- gratings made by Buckbee-Mears. 20 The source was
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B precise method above, and a waist position within 4 cm
----------------- ----------- T of the output mirror of the laser source. Although the
w .H- H. precision of this experiment is not as high as might be

.K ,-expected for other methods that could be used for a
." 'continuous source, it demonstrates that the waist size

y-'E L2  and position can be determined for a single pulse. Data
C3  ,' obtained in this way could be used for a study of lensing

/D effects in solid state laser materials or of the effect of
C2 amplifiers or frequency doubling.

Fig. 3. Schematic of an experimental arrangement to determine the The second type of experiment uses the theory de-
waist size and position. Laser W is used for damage testing with beam veloped in the previous section to determine the posi-
T. A wedged beam splitter B sends light through the hole gratings tion of the input waist by making measurements of the
H to three lenses. Camera backs C are placed at the focal plane of
L, and distances D and E from the back focal points of L2 and L 3. spacing t between interference maxima formed by a hole

grating. The experimental arrangement is shown
schematically in Fig. 1. Using a He-Ne laser placed a

a Spectra-Physics He-Ne 0.5-mW laser with a nominal distance s from a lens of focal length f and placing a hole
beam size of 0.4 mm. 21 Since it has a planohemis- grating at a distance z from the waist, it was shown that
pherical cavity, the waist is located at the front the separation of interference maxima in the back focal
mirror.3  plane of the lens is given by t = fd/z, where d is the

Part of one experiment measured the waist size. The spacing of the holes in the hole grating. The emphasis
hole radius in the hole grating was 80 gm with a hole was on determining the spacing of the maxima as a
spacing of 260 Aim in a square array. Scanning a function of hole separation and arrangement, the dis-
knife-edge at the autocollimated focal point of a 750-cm tance of the hole grating from the laser, the distance of
f/12 mirror, a measure of wo could be made with the the laser from the lens, and different lens focal
result of 369 ± 6 gm. This size was determined using length.
several of the diffracted orders produced by the hole Figures 4-6 show portions of the interference patterns
grating, 19 using different positions of the laser source formed in the focal plane of a mirror of 403-cm focal
and using different positions of the hole grating in the length. For Fig. 4, a 900 hole grating with holes of ra-
beam incident on the mirror. In the last case, distances dius 110 um and spacing of 397 um was located 415 cm
from the mirror of up to 400 cm were used. A chopper from the laser which was -800 cm from the mirror.
was placed near the laser to allow phase-sensitive de- Using the equation z = fd/t, z was determined to be 390
tection. The distance between the 84.1 and 15.9% cm, a result 5% different from the distance actually used
transmission points was used as the 1/e2 radius fol- assuming the output waist of the laser was at the posi-
lowing the theory of Huguley and Loomis. 22  tion of the output mirror. In a more extensive experi-

The second part of this experiment was a mock-up of ment, this hole grating was positioned from 380 to 870
a pulsed laser damage experiment and is shown sche- cm from the waist and the resulting fringes photo-
matically in Fig. 3. A wedged beam splitter produced graphed. From twenty-three observations the average
three beams in addition to a direct beam which would ratio of the actual value of z to the computed value was
be used for testing. The hole gratings placed in front 1.019 with a correlation of 0.990. Other measurements
of the lenses were the same as used above. Infrared- using larger and smaller values of z, different distances
sensitive film (Kodak high speed film 2481) developed from the laser to the mirror, and different hole gratings
for 12 min at 20*C in D-76 to yield a contrast index of showed similar agreement. In general, those for which
-1 was used for its sensitivity at the ruby wavelength, many fringes were formed yielded smaller errors due
Referring to Fig. 3, C1 is a camera back placed at the probably to the sharpness of the fringes increasing the
focus of LI (f = 190 cm) to measure the beam divergence setability. Since for these cases large z values are
for calculating a value of wo. C2 and C3 were camera needed, it was established that the error in the position
backs placed at selected distances D and E from the of the waist could be determined to ±15 cm. No dif-
focal points of lenses L 2 (f = 87 cm) and L3. As noted ference was observed or expected for z terms of equal
above, the third lens and camera are needed only for size but opposite sign.
selection of the proper root of the equation given. In Figures 5 and 6 show portions of the patterns formed
this case they were not needed since the position of the with other gratings for which z was chosen so that N, the
input waist was known for the He-Ne laser source used. number of fringes/order, had particular values. In Fig.
Each film was given an exposure through a step-wedge 5(A), N = 4.0 for a square grating of d = 787 gm. In
so that the contrast index for that film could be mea- Fig. 5(B), N = 3.5 for the same grating. For Fig. 5(A)
sured. The transmissions of the negatives T(x) = To the center of the beam was made to coincide with the
exp(a-yx 2) were fitted to a Gaussian function and its center of a hole so that constructive interference occurs
exponent solved for a using the measured values of, equally distant between the several orders of diffraction.
the contrast index. The beam size is given by V/2/a. In Fig. 5(B), the beam was centered between four holes
The result was then used to determine the input waist so that an interference minimum occurred between the
position. The results indicated an input waist of 350 orders. Figure 6 shows results with two nonsquare
,um, compared with 369 gm measured by the more gratings. In (A) a grating with spacings of 559 and 970
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tion at a distance corresponding to 8 fringes/order in
three directions.

A study of Eq. (12) shows that, if z, d, and X were
chosen to produce a half-integral number of fringes/
order, the intensity at the center 1(0) would show no
change due to interference effects between adjacent
diffracted orders regardless of the position of the center
of the beam with respect to the position of the holes in
the hole grating. This suggests an alternative method
for the measurement of the waist position. Although
the method is not applicable to measurement for a single
pulse, it was shown to be the most precise of the meth-
ods used in this work. Two types of scanning of the

Fig. 4. Central portion of the diffraction pattern formed using a pattern in the Fraunhofer plane were used. First, using
square 900 hole grating with spacing of 398 um placed 415 cm from an estimate of the correct value of z needed to produce

a He-Ne laser. the half-integral number of fringes/order, the intensity
near the center of the pattern is measured, using a slit
or pinhole depending on the required geometry, while
the hole grating is scanned across the beam. The in-
tensity will change in synchronism with the grating's
motion. Changes in the position of the slit will yield a
position of smallest intensity change, i.e., at the exact
beam center. Then the z position of the hole grating

Sis changed and the scan by the hole grating repeated. It
.was found that for a pattern similar to the one shown in

*Fig. 5(B), a change in z of 2 cm from the optimum po-
a .sition was detectable. Using the measured value of d

ffi 798 Am, z was calculated to be 352 cm, a result which
can be compared with the distance from the hole grating
to the front mirror of the laser of 357 cm. It is noted
that the intensity variation in principle will not be zero

A B since second-nearest neighbor orders will produce a
Fig. 5. Central portions of the diffraction patterns formed using a double frequency variation in intensity which will not

square 900 hole grating with (A) the beam centered on a hole and ar- reduce to zero.
ranged to produce 4.0 fringes/order, and (B) the beam centered be- The importance of these results is that a waist posi-

tween four holes and arranged to produce 3.5 fringes/order. tion can be determined independent of the value of ZR
and is therefore most applicable to beams of large ZR for
which many methods of waist position determination
are not appropriate.
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